An Algebraic Extension of the Macmahon Master Theorem

نویسنده

  • PAVEL ETINGOF
چکیده

We present a new algebraic extension of the classical MacMahon Master Theorem. The basis of our extension is the Koszul duality for non-quadratic algebras defined by Berger. Combinatorial implications are also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-commutative Extensions of the Macmahon Master Theorem

We present several non-commutative extensions of the MacMahon Master Theorem, further extending the results of Cartier-Foata and Garoufalidis-LêZeilberger. The proofs are combinatorial and new even in the classical cases. We also give applications to the β-extension and Krattenthaler-Schlosser’s q-analogue. Introduction The MacMahon Master Theorem is one of the jewels in enumerative combinatori...

متن کامل

Non-commutative Sylvester’s determinantal identity, preprint

Sylvester's identity is a classical determinantal identity with a straightforward linear algebra proof. We present a new, combinatorial proof of the identity, prove several non-commutative versions, and find a β-extension that is both a generalization of Sylvester's identity and the β-extension of the MacMahon master theorem.

متن کامل

Non-Commutative Sylvester's Determinantal Identity

Sylvester’s identity is a classical determinantal identity with a straightforward linear algebra proof. We present combinatorial proofs of several non-commutative extensions, and find a β-extension that is both a generalization of Sylvester’s identity and the β-extension of the quantum MacMahon master theorem.

متن کامل

A New Proof of the Garoufalidis-Lê-Zeilberger Quantum MacMahon Master Theorem

We propose a new proof of the quantum version of MacMahon’s Master Theorem, established by Garoufalidis, Lê and Zeilberger. RÉSUMÉ. Nous proposons une nouvelle démonstration de la version quantique du Master Théorème de MacMahon, établi par Garoufalidis, Lê et Zeilberger.

متن کامل

Some generalizations of the MacMahon Master Theorem

We consider a number of generalizations of the β-extended MacMahon Master Theorem for a matrix. The generalizations are based on replacing permutations on multisets formed from matrix indices by partial permutations or derangements over matrix or submatrix indices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006